Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux.
نویسندگان
چکیده
Cellular resistance to the antifolate methotrexate (MTX) is often caused by target amplification, uptake defects, or alterations in polyglutamylation. Here we have examined MTX cross-resistance in a human breast carcinoma cell line (MCF7/MX) selected in the presence of mitoxantrone, an anticancer agent associated with the multidrug resistance (MDR) phenotype. Examination of protein expression and enzyme activities showed that MCF7/MX cells displayed none of the classical mechanisms of MTX resistance. They did, however, exhibit an ATP-sensitive accumulation defect accompanied by reduced polyglutamylation. Although the kinetics of drug uptake was similar between parental and resistant cells, the resistant cells exhibited increased energy-dependent drug efflux. This suggested the involvement of an ATP-binding cassette (ABC) transporter. However, cells transfected with the breast cancer resistance protein (BCRP)-the ABC transporter known to be highly overexpressed in MCF7/MX cells and to confer mitoxantrone resistance (D. D. Ross et al., J. Natl. Cancer Inst. 91: 429-433, 1999)-were not MTX resistant, which suggested that this transporter is not involved in MTX cross-resistance. Moreover, members of the MRP protein family of transport proteins, which had previously been implicated in MTX resistance, were not found to be overexpressed in the MCF7/MX cells. Thus, our data suggest that a novel MTX-specific efflux pump may be involved in this unusual cross-resistance phenotype.
منابع مشابه
Attributable to Enhanced Energy-dependent Drug Efflux Multidrug-resistant MCF7 Breast Cancer Cell Line Is Methotrexate Cross-Resistance in a Mitoxantrone-selected
Cellular resistance to the antifolate methotrexate (MTX) is often caused by target amplification, uptake defects, or alterations in polyglutamylation. Here we have examined MTX cross-resistance in a human breast carcinoma cell line (MCF7/MX) selected in the presence of mitoxantrone, an anticancer agent associated with the multidrug resistance (MDR) phenotype. Examination of protein expression a...
متن کاملResistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells: evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins.
We examined the role of multidrug resistance protein (MRP) 1 (ABCC1) in the emergence of mitoxantrone (MX) cross-resistance in a MCF7 breast cancer cell line selected for resistance to etoposide. The resistant cell line, MCF7/VP, expresses high levels of MRP1, whereas the parental cell line, MCF7/WT, does not. MCF7/VP cells are 6-10-fold cross-resistant to MX when compared with MCF7/WT cells. D...
متن کاملOverexpression of wild-type breast cancer resistance protein mediates methotrexate resistance.
Previously, we have reported that a multidrug-resistant, mitoxantrone (MX)-selected cell line, MCF7/MX, is highly cross-resistant to the antifolate methotrexate (MTX), because of enhanced ATP-dependent drug efflux (E. L. Volk et al., Cancer Res., 60: 3514-3521, 2000). These cells overexpress the breast cancer resistance protein (BCRP), and resistance to MTX as well as to MX was reversible by th...
متن کاملProtein Mediates Methotrexate Resistance Overexpression of Wild-Type Breast Cancer Resistance
Previously, we have reported that a multidrug-resistant, mitoxantrone (MX)-selected cell line, MCF7/MX, is highly cross-resistant to the antifolate methotrexate (MTX), because of enhanced ATP-dependent drug efflux (E. L. Volk et al., Cancer Res., 60: 3514–3521, 2000). These cells overexpress the breast cancer resistance protein (BCRP), and resistance to MTX as well as to MX was reversible by th...
متن کاملMultidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance.
A human breast cancer cell line (MCF7/WT) was selected for resistance to etoposide (VP-16) by stepwise exposure to 2-fold increasing concentrations of this agent. The resulting cell line (MCF7/VP) was 28-, 21-, and 9-fold resistant to VP-16, VM-26, and doxorubicin, respectively. MCF7/VP cells also exhibited low-level cross-resistance to 4'-(9-acridinylamino)-methanesulfon-m-anisidide, mitoxantr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 13 شماره
صفحات -
تاریخ انتشار 2000